Search results
Results from the WOW.Com Content Network
The separate liver promoter allows glucokinase to be regulated differently in hepatocytes than in the neuroendocrine cells. Neuroendocrine cells of the pancreas, gut, and brain share some common aspects of glucokinase production, regulation, and function. [30] These tissues are collectively referred to as "neuroendocrine" cells in this context.
The glucokinase regulatory protein (GKRP) also known as glucokinase (hexokinase 4) regulator (GCKR) is a protein produced in hepatocytes (liver cells). GKRP binds and moves glucokinase (GK), thereby controlling both activity and intracellular location [1] [2] of this key enzyme of glucose metabolism. [3] GKRP is a 68 kD protein of 626 amino acids.
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
The gene product is a regulatory protein that inhibits glucokinase in liver and pancreatic islet cells by binding non-covalently to form an inactive complex with the enzyme. This gene is considered a susceptibility gene candidate for a form of maturity onset diabetes of the young (MODY). [provided by RefSeq, Jul 2008].
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle , in the liver , and also activated by insulin in response to high glucose levels .
Glycolysis can be regulated at different steps of the process through feedback regulation. The step that is regulated the most is the third step. This regulation is to ensure that the body is not over-producing pyruvate molecules. The regulation also allows for the storage of glucose molecules into fatty acids. [5]
The polyol pathway is a two-step process that converts glucose to fructose. [1] In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway. The pathway is implicated in diabetic complications, especially in microvascular damage to the retina, [2] kidney, [3 ...
In enzymology, an ADP-specific glucokinase (EC 2.7.1.147) also known as ADP-dependent glucokinase is an enzyme that catalyzes the chemical reaction. ADP + D-glucose AMP + D-glucose 6-phosphate. Thus, the two substrates of this enzyme are ADP and D-glucose, whereas its two products are AMP and D-glucose 6-phosphate.