Search results
Results from the WOW.Com Content Network
In the heart of Asia, deep underground, two huge tectonic plates are crashing into each other — a violent but slow-motion bout of geological bumper cars that over time has sculpted the soaring ...
The Himalayas, which stretch over 2400 km between the Namcha Barwa syntaxis at the eastern end of the mountain range and the Nanga Parbat syntaxis at the western end, are the result of an ongoing orogeny — the collision of the continental crust of two tectonic plates, namely, the Indian Plate thrusting into the Eurasian Plate.
The Himalayan mountain belt was produced by the collision of the Indian plate and the Eurasian plate. It is structurally dominated by three north-dipping, fault-bound geological units stacked on each other. The major faults are South Tibetan Detachment, the Main Central Thrust, the Main Boundary Thrust and the Main Frontal Thrust. [2]
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
The mountain peak has been steadily gaining height along with the rest of the Himalayas since its birth about 45 million years ago from the collision of the tectonic plates beneath the Indian ...
Obduction zones occurs when the continental plate is pushed under the oceanic plate, but this is unusual as the relative densities of the tectonic plates favours subduction of the oceanic plate. This causes the oceanic plate to buckle and usually results in a new mid-ocean ridge forming and turning the obduction into subduction. [citation needed]
A geological map of the Himalaya region. The Main Himalayan Thrust underlies the rock units. Diagram showing a décollement. The Main Himalayan Thrust (MHT) is a décollement under the Himalaya Range. This thrust fault follows a NW-SE strike, reminiscent of an arc, and gently dips about 10 degrees towards the north, beneath the region.
Tectonic uplift is the geologic uplift of Earth's surface that is attributed to plate tectonics. While isostatic response is important, an increase in the mean elevation of a region can only occur in response to tectonic processes of crustal thickening (such as mountain building events), changes in the density distribution of the crust and ...