enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    In the study of heat transfer, Schwarzschild's equation[1][2][3] is used to calculate radiative transfer (energy transfer via electromagnetic radiation) through a medium in local thermodynamic equilibrium that both absorbs and emits radiation. The incremental change in spectral intensity, [4] (dIλ, [W/sr/m 2 /μm]) at a given wavelength as ...

  3. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer. Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.

  4. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons. Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of ...

  5. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    A hot, less-dense lower boundary layer sends plumes of hot material upwards, and cold material from the top moves downwards. Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such ...

  6. General circulation model - Wikipedia

    en.wikipedia.org/wiki/General_circulation_model

    Atmospheric models calculate winds, heat transfer, radiation, relative humidity, and surface hydrology within each grid and evaluate interactions with neighboring points. [ 1 ] A general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean.

  7. Förster resonance energy transfer - Wikipedia

    en.wikipedia.org/wiki/Förster_resonance_energy...

    Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). [1] A donor chromophore, initially in its electronic excited state, may transfer energy to an ...

  8. Wave–particle duality - Wikipedia

    en.wikipedia.org/wiki/Wave–particle_duality

    Wave-particle duality is the concept in quantum mechanics that quantum entities exhibit particle or wave properties according to the experimental circumstances. [ 1 ] : 59 It expresses the inability of the classical concepts such as particle or wave to fully describe the behavior of quantum objects. [ 2 ] :

  9. Linear energy transfer - Wikipedia

    en.wikipedia.org/wiki/Linear_energy_transfer

    Linear energy transfer. Diffusion cloud chamber with tracks of ionizing radiation (alpha particles) that are made visible as strings of droplets. In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter.