Search results
Results from the WOW.Com Content Network
Increased atmospheric carbon dioxide has been found to reduce plant water use, and consequently, the uptake of nitrogen, so particularly benefiting crop yields in arid regions. [10] The carbohydrate content of crops is increased from photosynthesis, but protein content is reduced due to lower nitrogen uptake.
Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]
For example, in high carbon dioxide concentrations or in low light, the plant is not able to regenerate ribulose-1,5-bisphosphate fast enough (also known RUBP, the acceptor molecule in photosynthetic carbon reduction). So in this case, photosynthetic capacity is limited by electron transport of the light reaction, which generates the NADPH and ...
A photosynthesis system analysing the photosynthetic rate of a maize leaf. Photosynthesis systems are electronic scientific instruments designed for non-destructive measurement of photosynthetic rates in the field. Photosynthesis systems are commonly used in agronomic and environmental research, as well as studies of the global carbon cycle.
Photosynthesis is the only process that allows the conversion of atmospheric carbon (CO2) to organic (solid) carbon, and this process plays an essential role in climate models. This lead researchers to study the sun-induced chlorophyll fluorescence (i.e., chlorophyll fluorescence that uses the Sun as illumination source; the glow of a plant) as ...
Cyanobacteria such as these carry out photosynthesis. Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.
These include the amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying ...
The CO 2 compensation point (Γ) is the CO 2 concentration at which the rate of photosynthesis exactly matches the rate of respiration. There is a significant difference in Γ between C 3 plants and C 4 plants: on land, the typical value for Γ in a C 3 plant ranges from 40–100 μmol/mol, while in C 4 plants the values are lower at 3–10 μmol/mol. Plants with a weaker CCM, such as C2 ...