Search results
Results from the WOW.Com Content Network
Nevertheless, it is deemed unlikely that ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC were inconsistent, that fact would have been uncovered by now. This much is certain — ZFC is immune to the classic paradoxes of naive set theory: Russell's paradox, the Burali-Forti paradox, and Cantor's paradox.
The collection of countable transitive models of ZFC (in some universe) is called the hyperverse and is very similar to the "multiverse". A typical difference between the universe and multiverse views is the attitude to the continuum hypothesis. In the universe view the continuum hypothesis is a meaningful question that is either true or false ...
An initial segment of the von Neumann universe. Ordinal multiplication is reversed from our usual convention; see Ordinal arithmetic.. The cumulative hierarchy is a collection of sets V α indexed by the class of ordinal numbers; in particular, V α is the set of all sets having ranks less than α.
The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.
The axiom of global choice states that there is a global choice function τ, meaning a function such that for every non-empty set z, τ(z) is an element of z.. The axiom of global choice cannot be stated directly in the language of Zermelo–Fraenkel set theory (ZF) with the axiom of choice (AC), known as ZFC, as the choice function τ is a proper class and in ZFC one cannot quantify over classes.
Joel David Hamkins proposes a multiverse approach to set theory and argues that "the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and, as a result, it can no longer be settled in the manner formerly hoped for". [23]
The following set theoretic statements are independent of ZFC, among others: the continuum hypothesis or CH (Gödel produced a model of ZFC in which CH is true, showing that CH cannot be disproven in ZFC; Paul Cohen later invented the method of forcing to exhibit a model of ZFC in which CH fails, showing that CH cannot be proven in ZFC. The ...
The existence of a minimal model cannot be proved in ZFC, even assuming that ZFC is consistent, but follows from the existence of a standard model as follows. If there is a set W in the von Neumann universe V that is a standard model of ZF, and the ordinal κ is the set of ordinals that occur in W , then L κ is the class of constructible sets ...