enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron is a space-filling polyhedron, meaning it can be applied to tessellate three-dimensional space: it can be stacked to fill a space, much like hexagons fill a plane. It is a parallelohedron because it can be space-filling a honeycomb in which all of its copies meet face-to-face. [ 7 ]

  3. Rhombic dodecahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedral_honeycomb

    The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.

  4. Space-filling polyhedron - Wikipedia

    en.wikipedia.org/wiki/Space-filling_polyhedron

    The cube is the only Platonic solid that can fill space, although a tiling that combines tetrahedra and octahedra (the tetrahedral-octahedral honeycomb) is possible. Although the regular tetrahedron cannot fill space, other tetrahedra can, including the Goursat tetrahedra derived from the cube, and the Hill tetrahedra.

  5. Dual uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_uniform_polyhedron

    The illustration here shows the vertex figure (red) of the cuboctahedron being used to derive the corresponding face (blue) of the rhombic dodecahedron.. For a uniform polyhedron, each face of the dual polyhedron may be derived from the original polyhedron's corresponding vertex figure by using the Dorman Luke construction. [2]

  6. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    Download QR code; Print/export Download as PDF; Printable version; In other projects ... rhombic dodecahedron: 2|3 4 3.4.3.4 O h: U07 K12 12 24 14

  7. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    Non-convex cells which pack without overlapping, analogous to tilings of concave polygons. These include a packing of the small stellated rhombic dodecahedron, as in the Yoshimoto Cube. Overlapping of cells whose positive and negative densities 'cancel out' to form a uniformly dense continuum, analogous to overlapping tilings of the plane.

  8. Category:Space-filling polyhedra - Wikipedia

    en.wikipedia.org/wiki/Category:Space-filling...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  9. File:Rhombic dodecahedron.stl - Wikipedia

    en.wikipedia.org/wiki/File:Rhombic_dodecahedron.stl

    The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I ...