Search results
Results from the WOW.Com Content Network
In a rigidity matroid for a graph with n vertices in d-dimensional space, a set of edges that defines a subgraph with k degrees of freedom has matroid rank dn − k. A set of edges is independent if and only if, for every edge in the set, removing the edge would increase the number of degrees of freedom of the remaining subgraph. [1] [2] [3]
Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry. The coordinates of points in a plane are two-dimensional vectors in R 2 (two dimensional space).
In other words, a sequence of vectors is linearly independent if the only representation of as a linear combination of its vectors is the trivial representation in which all the scalars are zero. [2] Even more concisely, a sequence of vectors is linearly independent if and only if 0 {\displaystyle \mathbf {0} } can be represented as a linear ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis. Thus, the helicoidal field formed by the velocity vectors in a moving rigid body flattens out the further the points are radially from the twist axis.
Thus, the sum of all applied forces and torques (with respect to the origin of the coordinate system) acting on the body can be given as the sum of a volume and surface integral: F = ∫ V a d m = ∫ V a ρ d V = ∫ S t d S + ∫ V b ρ d V {\displaystyle \mathbf {F} =\int _{V}\mathbf {a} \,dm=\int _{V}\mathbf {a} \rho \,dV=\int _{S}\mathbf ...
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments ) acting on the rigid body.
The theory is based on two postulates: (1) that the mathematical forms of the laws of physics are invariant in all inertial systems; and (2) that the speed of light in vacuum is constant and independent of the source or observer. Reconciling the two postulates requires a unification of space and time into the frame-dependent concept of spacetime.