enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry. The coordinates of points in a plane are two-dimensional vectors in R 2 (two dimensional space). Rigid transformations are those that preserve the distance between any two

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.

  5. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    The green line shows the slope of the velocity-time graph at the particular point where the two lines touch. Its slope is the acceleration at that point. Its slope is the acceleration at that point. In mechanics , the derivative of the position vs. time graph of an object is equal to the velocity of the object.

  6. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    Humans, like all known things in the universe, are in constant motion; [2]: 8–9 however, aside from obvious movements of the various external body parts and locomotion, humans are in motion in a variety of ways that are more difficult to perceive. Many of these "imperceptible motions" are only perceivable with the help of special tools and ...

  7. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space.

  8. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  9. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a point in time is the slope of the line tangent to the curve of a v(t) graph at that point. In other words, instantaneous acceleration is defined as the derivative of velocity with respect to time: [ 9 ] a = d v d t . {\displaystyle {\boldsymbol ...