Search results
Results from the WOW.Com Content Network
The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...
The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.
A fluid flowing along a flat plate will stick to it at the point of contact and this is known as the no-slip condition. This is an outcome of the adhesive forces between the flat plate and the fluid. This is an outcome of the adhesive forces between the flat plate and the fluid.
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
Also apophthegm. A terse, pithy saying, akin to a proverb, maxim, or aphorism. aposiopesis A rhetorical device in which speech is broken off abruptly and the sentence is left unfinished. apostrophe A figure of speech in which a speaker breaks off from addressing the audience (e.g., in a play) and directs speech to a third party such as an opposing litigant or some other individual, sometimes ...
A great deal of effort has been devoted in the literature to developing analogies among these three transport processes for turbulent transfer so as to allow prediction of one from any of the others. The Reynolds analogy assumes that the turbulent diffusivities are all equal and that the molecular diffusivities of momentum (μ/ρ) and mass (D ...
Boundary conditions are: axisymmetry at the centre, and no-slip condition on the wall; Pressure gradient is a periodic function that drives the fluid; Gravitation has no effect on the fluid. Thus, the Navier-Stokes equation and the continuity equation are simplified as
This result is for a specific and very simple model, but it does illustrate general features of diffusioosmoisis: 1) the hydrostatic pressure is, by definition (flow induced by pressure gradients in the bulk is a common but separate physical phenomenon) uniform in the bulk, but there is a gradient in the pressure in the interface, 2) this ...