Search results
Results from the WOW.Com Content Network
For example, a common case is a tetrahedral carbon bonded to four distinct groups a, b, c, and d (Cabcd), where swapping any two groups (e.g., Cbacd) leads to a stereoisomer of the original, so the central C is a stereocenter. Many chiral molecules have point chirality, namely a single chiral stereogenic center that coincides with an atom.
A chiral molecule is a type of molecule that has a non-superposable mirror image. The feature that is most often the cause of chirality in molecules is the presence of an asymmetric carbon atom. [16] [17] The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18]
Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are called racemic drugs and these are obviously devoid of optical rotation. The most commonly encountered stereogenic unit, [2] that confers chirality to drug molecules are stereogenic center. Stereogenic center can be ...
In nature, molecules with chirality include hormones, DNA, antibodies, and enzymes. For example, (R)-limonene smells like oranges, while (S)-limonene smells like lemons. Both molecules have the same chemical formula, but their spatial orientations are different, which makes a big difference in their biological properties.
Any planar pattern that does not have a line of mirror symmetry is 2d-chiral, and examples include flat spirals and letters such as S, G, P. In contrast to 3d-chiral objects, the perceived sense of twist of 2d-chiral patterns is reversed for opposite directions of observation.
A chirality center (chiral center) is a type of stereocenter. A chirality center is defined as an atom holding a set of four different ligands (atoms or groups of atoms) in a spatial arrangement which is non-superposable on its mirror image. Chirality centers must be sp 3 hybridized, meaning that a chirality center can only have single bonds. [5]
Glyceraldehyde has one chiral center and therefore exists as two different enantiomers with opposite optical rotation: In the D/L nomenclature, either D from Latin Dexter meaning "right", or L from Latin Laevo meaning "left" In the R/S nomenclature, either R from Latin Rectus meaning "right", or S from Latin Sinister meaning "left"
Absolute configuration uses a set of rules to describe the relative positions of each bond around the chiral center atom. The most common labeling method uses the descriptors R or S and is based on the Cahn–Ingold–Prelog priority rules. R and S refer to rectus and sinister, Latin for right and left, respectively.