enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  3. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to ...

  4. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Orange: A component-based data mining and machine learning software suite written in the Python language. PSPP: Data mining and statistics software under the GNU Project similar to SPSS; R: A programming language and software environment for statistical computing, data mining, and graphics. It is part of the GNU Project.

  5. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  6. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  7. RapidMiner - Wikipedia

    en.wikipedia.org/wiki/RapidMiner

    RapidMiner provides a variety of learning schemes, models, and algorithms that can be extended using R and Python scripts. [5] RapidMiner can also use plugins available through the RapidMiner Marketplace. The RapidMiner Marketplace is a platform for developers to create data analysis algorithms and publish them to the community. [6]

  8. Lift (data mining) - Wikipedia

    en.wikipedia.org/wiki/Lift_(data_mining)

    In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.

  9. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam. Models can use one or more classifiers in trying to determine the probability of a set of data belonging to another set. For ...