Search results
Results from the WOW.Com Content Network
Convex regular icosahedron A tensegrity icosahedron. In geometry, an icosahedron (/ ˌ aɪ k ɒ s ə ˈ h iː d r ən,-k ə-,-k oʊ-/ or / aɪ ˌ k ɒ s ə ˈ h iː d r ən / [1]) is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'.
It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron. Many polyhedra are constructed from the regular icosahedron. For example, most of the Kepler–Poinsot polyhedron is constructed by faceting. Some of the Johnson solids can be constructed by removing the pentagonal ...
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
For example, the icosahedron is {3,5+} 1,0, and pentakis dodecahedron, {3,5+} 1,1 is seen as a regular dodecahedron with pentagonal faces divided into 5 triangles. The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created.
An example can be found in the model of a buckminsterfullerene, a truncated icosahedron-shaped geodesic dome allotrope of elemental carbon discovered in 1985. [17] In other engineering and science applications, its shape was also the configuration of the lenses used for focusing the explosive shock waves of the detonators in both the gadget and ...
It can be seen as the compound of an icosahedron and dodecahedron. It is one of four compounds constructed from a Platonic solid or Kepler-Poinsot solid, and its dual. It has icosahedral symmetry (I h) and the same vertex arrangement as a rhombic triacontahedron.
A rhombic icosahedron. The rhombic icosahedron is a polyhedron shaped like an oblate sphere.Its 20 faces are congruent golden rhombi; [1] 3, 4, or 5 faces meet at each vertex. It has 5 faces (green on top figure) meeting at each of its 2 poles; these 2 vertices lie on its axis of 5-fold symmetry, which is perpendicular to 5 axes of 2-fold symmetry through the midpoints of opposite equatorial ...
The motivation for Hamilton was the problem of understanding the symmetries of the dodecahedron and icosahedron, two dual polyhedra that have the same symmetries as each other. For this purpose he also invented icosian calculus , a system of non-commutative algebra which he used to compute these symmetries.