Search results
Results from the WOW.Com Content Network
An electrical synapse, or gap junction, is a mechanical and electrically conductive synapse, a functional junction between two neighboring neurons. The synapse is formed at a narrow gap between the pre- and postsynaptic neurons known as a gap junction .
This has shown that proteins in stereocilia move quickly, indicating that the movement of the proteins within the hair cells may be a very important factor to maintaining the integrity of the hair bundles in the inner ear. Further research found myosin and actin, two proteins that are important for cell movement, move very quickly.
The stapedius reflex of the middle ear muscles helps protect the inner ear from damage by reducing the transmission of sound energy when the stapedius muscle is activated in response to sound. The middle ear still contains the sound information in wave form; it is converted to nerve impulses in the cochlea .
The Outer ear consists of the pinna or auricle (visible parts including ear lobes and concha), and the auditory meatus (the passageway for sound). The fundamental function of this part of the ear is to gather sound energy and deliver it to the eardrum. Resonances of the external ear selectively boost sound pressure with frequency in the range 2 ...
Chemical and electrical synapses are two ways of synaptic transmission. In a chemical synapse, electrical activity in the presynaptic neuron is converted (via the activation of voltage-gated calcium channels) into the release of a chemical called a neurotransmitter that binds to receptors located in the plasma membrane of the postsynaptic cell ...
Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane. The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2]
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. [1] It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. [2] Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy.
Axons of the vestibular nerve synapse in the vestibular nucleus are found on the lateral floor and wall of the fourth ventricle in the pons and medulla. It arises from bipolar cells in the vestibular ganglion which is situated in the upper part of the outer end of the internal auditory meatus.