Search results
Results from the WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
The above example simply states that the function takes the value () for all x values larger than a. With this, all the forces acting on a beam can be added, with their respective points of action being the value of a. A particular case is the unit step function,
Then the set of discontinuities of the first kind is at most countable. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind. With this remark the theorem takes the stronger form:
A graph of a parabola with a removable singularity at x = 2. In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
Discontinuities can then be removed by adding 2 π whenever Δφ[n] ≤ − π, and subtracting 2 π whenever Δφ[n] > π. That allows φ[n] to accumulate without limit and produces an unwrapped instantaneous phase. An equivalent formulation that replaces the modulo 2 π operation with a complex multiplication is:
Namely the rarefaction wave, the contact discontinuity and the shock discontinuity. If this is solved numerically, one can test against the analytical solution, and get information how well a code captures and resolves shocks and contact discontinuities and reproduce the correct density profile of the rarefaction wave.
This is the only physical step of the whole procedure. The discontinuities at the interfaces are resolved in a superposition of waves satisfying locally the conservation equations. The original Godunov method is based upon the exact solution of the Riemann problems. However, approximate solutions can be applied as an alternative.
In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail.