Search results
Results from the WOW.Com Content Network
The primary methods for visualizing two-dimensional (2D) scalar fields are color mapping and drawing contour lines. 2D vector fields are visualized using glyphs and streamlines or line integral convolution methods. 2D tensor fields are often resolved to a vector field by using one of the two eigenvectors to represent the tensor each point in ...
Vector-based devices, such as the vector CRT and the pen plotter, directly control a drawing mechanism to produce geometric shapes. Since vector display devices can define a line by dealing with just two points (that is, the coordinates of each end of the line), the device can reduce the total amount of data it must deal with by organizing the ...
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w . In mathematics and physics , a vector space (also called a linear space) is a set whose elements, often called vectors , can be added together and multiplied ...
Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).
Two examples (r = −1 and r = 2) are given below: The scalar multiplications −a and 2a of a vector a. Scalar multiplication is distributive over vector addition in the following sense: r(a + b) = ra + rb for all vectors a and b and all scalars r. One can also show that a − b = a + (−1)b.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
Typically, some scalar field in (like the vector length) is used to determine the hue, while the grayscale LIC output determines the brightness. Different choices of convolution kernels and random noise produce different textures; for example, pink noise produces a cloudy pattern where areas of higher flow stand out as smearing, suitable for ...