Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Electron micrograph of a 2D crystal of the LH1-Reaction center photosynthetic unit. A photosynthetic reaction center is a complex of several proteins, biological pigments, and other co-factors that together execute the primary energy conversion reactions of photosynthesis.
Using the above principles, equations that relate a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either temperature or a chemical molecule, have been derived for homomeric and heteromeric proteins, from monomers to trimers and potentially tetramers.
Photosynthetic reaction centre proteins are main protein components of photosynthetic reaction centres (RCs) of bacteria and plants. They are transmembrane proteins embedded in the chloroplast thylakoid or bacterial cell membrane. Plants, algae, and cyanobacteria have one type of PRC for each of its two photosystems.
Light-dependent reactions of photosynthesis at the thylakoid membrane. Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons.
Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .
This happens when light is available, as the ferredoxin protein is reduced in the photosystem I complex of the thylakoid electron chain when electrons are circulating through it. [13] Ferredoxin then binds to and reduces the thioredoxin protein, which activates the cycle enzymes by severing a cystine bond found in all these enzymes. This is a ...
RuBisCO is important biologically because it catalyzes the primary chemical reaction by which inorganic carbon enters the biosphere.While many autotrophic bacteria and archaea fix carbon via the reductive acetyl CoA pathway, the 3-hydroxypropionate cycle, or the reverse Krebs cycle, these pathways are relatively small contributors to global carbon fixation compared to that catalyzed by RuBisCO.