enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    In science, work is the energy transferred to or from an object via the application of force along a displacement.In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled.

  3. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    There are several ways of doing mechanical work, each in some way related to a force acting through a distance. [34] In basic mechanics, the work done by a constant force F on a body displaced a distance s in the direction of the force is given by = If the force is not constant, the work done is obtained by integrating the differential amount ...

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    To every action, there is always opposed an equal reaction; or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. [15]: 116 Rockets work by producing a strong reaction force downwards using rocket engines. This pushes the rocket upwards, without regard to the ground or the atmosphere.

  7. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest. [2]

  8. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  9. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    The product of force and displacement gives the work done, which is equal to the gravitational potential energy, thus =. The more formal definition is that potential energy is the energy difference between the energy of an object in a given position and its energy at a reference position.