Search results
Results from the WOW.Com Content Network
The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. This shows that the square of the n th triangular number is equal to the sum of the first n cube numbers. Also, the square of the n th triangular number is the same as the sum of the cubes of the integers 1 to n.
The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .
Alternatively, one can decompose the table into a sequence of nested gnomons, each consisting of the products in which the larger of the two terms is some fixed value. The sum within each gmonon is a cube, so the sum of the whole table is a sum of cubes. [6] Visual demonstration that the square of a triangular number equals a sum of cubes.
Formulas for summing consecutive squares to give a cubic polynomial, whose values are the square pyramidal numbers, are given by Archimedes, who used this sum as a lemma as part of a study of the volume of a cone, [2] and by Fibonacci, as part of a more general solution to the problem of finding formulas for sums of progressions of squares. [3]
A scrambled Rubik's Cube. An algorithm to determine the minimum number of moves to solve Rubik's Cube was published in 1997 by Richard Korf. [10] While it had been known since 1995 that 20 was a lower bound on the number of moves for the solution in the worst case, Tom Rokicki proved in 2010 that no configuration requires more than 20 moves. [11]
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
64 (2 6) and 729 (3 6) cubelets arranged as cubes ((2 2) 3 and (3 2) 3, respectively) and as squares ((2 3) 2 and (3 3) 2, respectively) In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together.