Search results
Results from the WOW.Com Content Network
The rate of convergence must be chosen carefully, though, usually h ∝ n −1/5. In many cases, highly accurate results for finite samples can be obtained via numerical methods (i.e. computers); even in such cases, though, asymptotic analysis can be useful. This point was made by Small (2010, §1.4), as follows.
Non-asymptotic rates of convergence do not have the common, standard definitions that asymptotic rates of convergence have. Among formal techniques, Lyapunov theory is one of the most powerful and widely applied frameworks for characterizing and analyzing non-asymptotic convergence behavior.
The asymptotic distribution can be further characterized in several different ways. First, the central limit theorem states that pointwise, ^ has asymptotically normal distribution with the standard rate of convergence: [2]
The asymptotic properties most often described are weak convergence / consistency of the sample paths of the bootstrap empirical process and the validity of confidence intervals derived from the bootstrap. This section describes the convergence of the empirical bootstrap.
When g is applied to a random variable such as the mean, the delta method would tend to work better as the sample size increases, since it would help reduce the variance, and thus the taylor approximation would be applied to a smaller range of the function g at the point of interest.
Asymptotic theory does not provide a method of evaluating the finite-sample distributions of sample statistics, however. Non-asymptotic bounds are provided by methods of approximation theory. Examples of applications are the following. In applied mathematics, asymptotic analysis is used to build numerical methods to approximate equation solutions.
Regular estimators are a class of statistical estimators that satisfy certain regularity conditions which make them amenable to asymptotic analysis. The convergence of a regular estimator's distribution is, in a sense, locally uniform. This is often considered desirable and leads to the convenient property that a small change in the parameter ...
Convergence in distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this article. However, convergence in distribution is very frequently used in practice; most often it arises from application of the central limit theorem .