enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code. The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect.

  3. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).

  4. Concatenated error correction code - Wikipedia

    en.wikipedia.org/wiki/Concatenated_error...

    This is a pictorial representation of a code concatenation, and, in particular, the Reed–Solomon code with n=q=4 and k=2 is used as the outer code and the Hadamard code with n=q and k=log q is used as the inner code. Overall, the concatenated code is a [, ⁡]-code.

  5. Five-qubit error correcting code - Wikipedia

    en.wikipedia.org/wiki/Five-qubit_error...

    Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages

  6. Soft-in soft-out decoder - Wikipedia

    en.wikipedia.org/wiki/Soft-in_soft-out_decoder

    Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages

  7. Verhoeff algorithm - Wikipedia

    en.wikipedia.org/wiki/Verhoeff_algorithm

    This is actually a single permutation (1 5 8 9 4 2 7 0)(3 6) applied iteratively; i.e. p(i+j,n) = p(i, p(j,n)). The Verhoeff checksum calculation is performed as follows: Create an array n out of the individual digits of the number, taken from right to left (rightmost digit is n 0, etc.). Initialize the checksum c to zero.

  8. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.

  9. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    The first element of a CIRC decoder is a relatively weak inner (32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to 2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, i.e., blocks with more than 2 byte errors.