Search results
Results from the WOW.Com Content Network
A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code. The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect.
This is a pictorial representation of a code concatenation, and, in particular, the Reed–Solomon code with n=q=4 and k=2 is used as the outer code and the Hadamard code with n=q and k=log q is used as the inner code. Overall, the concatenated code is a [, ]-code.
Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
Typically, the soft output is used as the soft input to an outer decoder in a system using concatenated codes, or to modify the input to a further decoding iteration such as in the decoding of turbo codes. Examples include the BCJR algorithm and the soft output Viterbi algorithm.
This triple repetition code is a Hamming code with m = 2, since there are two parity bits, and 2 2 − 2 − 1 = 1 data bit. Such codes cannot correctly repair all errors, however. In our example, if the channel flips two bits and the receiver gets 001, the system will detect the error, but conclude that the original bit is 0, which is incorrect.
The Reed–Solomon code is a [n, k, n − k + 1] code; in other words, it is a linear block code of length n (over F) with dimension k and minimum Hamming distance = + The Reed–Solomon code is optimal in the sense that the minimum distance has the maximum value possible for a linear code of size ( n , k ); this is known as the Singleton bound .