enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  3. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...

  4. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  5. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    For this reason, the Lebesgue definition makes it possible to calculate integrals for a broader class of functions. For example, the Dirichlet function, which is 1 where its argument is rational and 0 otherwise, has a Lebesgue integral, but does not have a Riemann integral. Furthermore, the Lebesgue integral of this function is zero, which ...

  6. Dirichlet series - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series

    The most famous example of a Dirichlet series is = =,whose analytic continuation to (apart from a simple pole at =) is the Riemann zeta function.. Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write +:

  7. Dirichlet series inversion - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series_inversion

    In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral ...

  8. Dirichlet convolution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_convolution

    The set of arithmetic functions forms a commutative ring, the Dirichlet ring, under pointwise addition, where f + g is defined by (f + g)(n) = f(n) + g(n), and Dirichlet convolution. The multiplicative identity is the unit function ε defined by ε ( n ) = 1 if n = 1 and ε ( n ) = 0 if n > 1 .

  9. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    It is named after Carl Johannes Thomae, but has many other names: the popcorn function, the raindrop function, the countable cloud function, the modified Dirichlet function, the ruler function (not to be confused with the integer ruler function), [2] the Riemann function, or the Stars over Babylon (John Horton Conway's name). [3]

  1. Related searches dirichlet function by libretexts in spring loaded window latch in oracle

    dirichlet l functiondirichlet kernel functions
    dirichlet function examplesdirichlet kernel
    dirichlet function in math