enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    A function with a vertical asymptote is not helpful in defining a very large number, although the function increases very rapidly: one has to define an argument very close to the asymptote, i.e. use a very small number, and constructing that is equivalent to constructing a very large number, e.g. the reciprocal.

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required. It should not be confused with the symbolic computation provided by many computer algebra systems , which represent numbers by expressions such as π ·sin(2) , and can thus represent ...

  4. Turtle (syntax) - Wikipedia

    en.wikipedia.org/wiki/Turtle_(syntax)

    Turtle is an alternative to RDF/XML, the original syntax and standard for writing RDF. As opposed to RDF/XML, Turtle does not rely on XML and is generally recognized as being more readable and easier to edit manually than its XML counterpart. SPARQL, the query language for RDF, uses a syntax similar to Turtle for expressing query patterns.

  5. Law of truly large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_truly_large_numbers

    The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of independent samples, any highly implausible (i.e. unlikely in any single sample, but with constant probability strictly greater than 0 in any sample) result is likely to be observed. [1]

  6. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.

  7. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the ...

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  9. Arbitrarily large - Wikipedia

    en.wikipedia.org/wiki/Arbitrarily_large

    The statement " is non-negative for arbitrarily large ." is a shorthand for: "For every real number , () is non-negative for some value of greater than .". In the common parlance, the term "arbitrarily long" is often used in the context of sequence of numbers.