enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required. It should not be confused with the symbolic computation provided by many computer algebra systems , which represent numbers by expressions such as π ·sin(2) , and can thus represent ...

  3. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    A very large number raised to a very large power is "approximately" equal to the larger of the following two values: the first value and 10 to the power the second. For example, for very large n {\displaystyle n} there is n n ≈ 10 n {\displaystyle n^{n}\approx 10^{n}} (see e.g. the computation of mega ) and also 2 n ≈ 10 n {\displaystyle 2 ...

  4. Names of large numbers - Wikipedia

    en.wikipedia.org/wiki/Names_of_large_numbers

    Names of larger numbers, however, have a tenuous, artificial existence, rarely found outside definitions, lists, and discussions of how large numbers are named. Even well-established names like sextillion are rarely used, since in the context of science, including astronomy, where such large numbers often occur, they are nearly always written ...

  5. GNU Multiple Precision Arithmetic Library - Wikipedia

    en.wikipedia.org/wiki/GNU_Multiple_Precision...

    GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [4] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...

  6. Arbitrarily large - Wikipedia

    en.wikipedia.org/wiki/Arbitrarily_large

    Rather, the phrase is used to refer to the fact that no matter how large a number is, there exists some arithmetic progression of prime numbers of length at least . [ 1 ] Similar to arbitrarily large, one can also define the phrase " P ( x ) {\displaystyle P(x)} holds for arbitrarily small real numbers", as follows: [ 2 ]

  7. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  9. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.