enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal time scale - Wikipedia

    en.wikipedia.org/wiki/Thermal_time_scale

    In astrophysics, the thermal time scale or Kelvin–Helmholtz time scale is the approximate time it takes for a star to radiate away its total kinetic energy content at its current luminosity rate. [1]

  3. Color index - Wikipedia

    en.wikipedia.org/wiki/Color_index

    In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is.

  4. Effective temperature - Wikipedia

    en.wikipedia.org/wiki/Effective_temperature

    The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.

  5. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Mass–luminosity_relation

    The derivation showed that stars can be approximately modelled as ideal gases, which was a new, somewhat radical idea at the time. What follows is a somewhat more modern approach based on the same principles. An important factor controlling the luminosity of a star (energy emitted per unit time) is the rate of energy dissipation through its bulk.

  6. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [27] So: L = 4 π R 2 σ T 4 {\displaystyle L=4\pi R^{2}\sigma T^{4}} where L is the luminosity , σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature .

  7. Stellar classification - Wikipedia

    en.wikipedia.org/wiki/Stellar_classification

    Main-sequence stars vary in surface temperature from approximately 2,000 to 50,000 K, whereas more-evolved stars – in particular, newly-formed white dwarfs – can have surface temperatures above 100,000 K. [3] Physically, the classes indicate the temperature of the star's atmosphere and are normally listed from hottest to coldest.

  8. Template:Solar radius calculator - Wikipedia

    en.wikipedia.org/wiki/Template:Solar_radius...

    All radii, once calculated, are divided by 6.957 × 10 8 to convert from m to R ☉.. AD radius determined from angular diameter and distance =, (/) =, = D is multiplied by 3.0857 × 10 19 to convert from kpc to m

  9. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    In massive stars (greater than about 1.5 M ☉), the core temperature is above about 1.8×10 7 K, so hydrogen-to-helium fusion occurs primarily via the CNO cycle. In the CNO cycle, the energy generation rate scales as the temperature to the 15th power, whereas the rate scales as the temperature to the 4th power in the proton-proton chains. [2]