enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    The otherwise binary Wang VS machine supported a 64-bit decimal floating-point format in 1977. [2] The Motorola 68881 supported a format with 17 digits of mantissa and 3 of exponent in 1984, with the floating-point support library for the Motorola 68040 processor providing a compatible 96-bit decimal floating-point storage format in 1990. [2]

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language designers. E.g., GW-BASIC's single-precision data type was the 32-bit MBF floating-point format.

  4. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.

  5. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    Floating-point arithmetic operations are performed by software, and double precision is not supported at all. The extended format occupies three 16-bit words, with the extra space simply ignored. [3] The IBM System/360 supports a 32-bit "short" floating-point format and a 64-bit "long" floating-point format. [4]

  6. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    An IEEE 754 format is a "set of representations of numerical values and symbols". A format may also include how the set is encoded. [9] A floating-point format is specified by a base (also called radix) b, which is either 2 (binary) or 10 (decimal) in IEEE 754; a precision p;

  7. decimal32 floating-point format - Wikipedia

    en.wikipedia.org/.../Decimal32_floating-point_format

    Be aware that the bit numbering used here for e.g. b 9 … b 0 is in opposite direction than that used in the document for the IEEE 754 standard b 0 … b 9, add. the decimal digits are numbered 0-base here while in opposite direction and 1-based in the IEEE 754 paper. The bits on white background are not counting for the value, but signal how ...

  8. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.

  9. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.