Search results
Results from the WOW.Com Content Network
Pressure in cylinder pattern in dependence on ignition timing: (a) - misfire, (b) too soon, (c) optimal, (d) too late. In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.
The switch is automatically operated by a cam driven by the engine. The timing of operation of the switch is set so that a spark is produced at the right time to ignite the compressed air/fuel mixture in the cylinder of the engine. A mechanism may be provided to slightly adjust timing to allow for varying load on the engine.
As batteries became more common in cars (due to the increased usage of electric starter motors), magneto systems were replaced by systems using an induction coil.The 1886 Benz Patent-Motorwagen and the 1908 Ford Model T used a trembler coil ignition system, whereby the trembler interrupted the current through the coil and caused a rapid series of sparks during each firing.
The injection system was purely mechanical, using a timed pumping cylinder and a non-return valve. On its downward stroke it compresses the rich mixture to about 70 psi at which time the rising pressure raises a spring loaded poppet valve off its seat and the charge is squirted into the cylinder. There it is aimed at the spark plug area and ...
Hot-bulb engine (two-stroke). 1. Hot bulb. 2. Cylinder. 3. Piston. 4. Crankcase Old Swedish hot-bulb engine in action. The hot-bulb engine, also known as a semi-diesel [1] or Akroyd engine, is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb ...
A Jabiru 5100 flat-8 four-stroke aircraft engine with dual ignition, with two spark plugs per cylinder and two distributors.. Dual Ignition is a system for spark-ignition engines, whereby critical ignition components, such as spark plugs and magnetos, are duplicated.
[2] The challenges associated with pre-ignition have increased in recent years with the development of highly boosted and "downspeeded" spark ignition engines. The reduced engine speeds allow more time for autoignition chemistry to complete thus promoting the possibility of pre-ignition and so called "mega-knock".
In compression ignition, air is first compressed and heated; fuel is then injected into the cylinder, causing it to self-ignite. This delivers a power stroke each time the piston rises and falls, without any need for the additional exhaust and induction strokes of the four-stroke cycle.