Search results
Results from the WOW.Com Content Network
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).
In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, [1] as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible.
A related concept is that of Turing equivalence – two computers P and Q are called equivalent if P can simulate Q and Q can simulate P. [4] The Church–Turing thesis conjectures that any function whose values can be computed by an algorithm can be computed by a Turing machine, and therefore that if any real-world computer can simulate a ...
In his 1936 paper, Turing described his idea as a "universal computing machine", but it is now known as the Universal Turing machine. [citation needed] Turing was sought by Womersley to work in the NPL on the ACE project; he accepted and began work on 1 October 1945 and by the end of the year he completed his outline of his 'Proposed electronic ...
A Turing machine which has the ability to simulate any other Turing machine is called universal - in other words, a Turing machine (TM) is said to be a universal Turing machine (or UTM) if, given any other TM, there is a some input (or "header") such that the first TM given that input "header" will forever after behave like the second TM.
Turing's a-machine model. Turing's a-machine (as he called it) was left-ended, right-end-infinite. He provided symbols əə to mark the left end. A finite number of tape symbols were permitted. The instructions (if a universal machine), and the "input" and "out" were written only on "F-squares", and markers were to appear on "E-squares".
With regard to what actions the machine actually does, Turing (1936) [2] states the following: "This [example] table (and all succeeding tables of the same kind) is to be understood to mean that for a configuration described in the first two columns the operations in the third column are carried out successively, and the machine then goes over into the m-configuration in the final column."
But then, if we replaced each of the seven symbols 'A' by 1, 'C' by 2, 'D' by 3, 'L' by 4, 'R' by 5, 'N' by 6, and ';' by 7, we would have an encoding of the Turing machine as a natural number: this is the description number of that Turing machine under Turing's universal machine. The simple Turing machine described above would thus have the ...