enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange's identity - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity

    In terms of the wedge product, Lagrange's identity can be written () = ().. Hence, it can be seen as a formula which gives the length of the wedge product of two vectors, which is the area of the parallelogram they define, in terms of the dot products of the two vectors, as ‖ ‖ = () = ‖ ‖ ‖ ‖ ().

  3. Lagrange's identity (boundary value problem) - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity...

    In the study of ordinary differential equations and their associated boundary value problems in mathematics, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator.

  4. Sylvester equation - Wikipedia

    en.wikipedia.org/wiki/Sylvester_equation

    Proof. The equation A X + X B = C {\displaystyle AX+XB=C} is a linear system with m n {\displaystyle mn} unknowns and the same number of equations. Hence it is uniquely solvable for any given C {\displaystyle C} if and only if the homogeneous equation A X + X B = 0 {\displaystyle AX+XB=0} admits only the trivial solution 0 {\displaystyle 0} .

  5. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...

  6. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  7. Infinite product - Wikipedia

    en.wikipedia.org/wiki/Infinite_product

    In mathematics, for a sequence of complex numbers a 1, a 2, a 3, ... the infinite product ∏ n = 1 ∞ a n = a 1 a 2 a 3 ⋯ {\displaystyle \prod _{n=1}^{\infty }a_{n}=a_{1}a_{2}a_{3}\cdots } is defined to be the limit of the partial products a 1 a 2 ... a n as n increases without bound.

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    For example, the solution set for the above equation is a line, since a point in the solution set can be chosen by specifying the value of the parameter z. An infinite solution of higher order may describe a plane, or higher-dimensional set. Different choices for the free variables may lead to different descriptions of the same solution set.

  9. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...