Search results
Results from the WOW.Com Content Network
A Manhattan plot is a type of plot, usually used to display data with a large number of data-points, many of non-zero amplitude, and with a distribution of higher-magnitude values. The plot is commonly used in genome-wide association studies (GWAS) to display significant SNPs .
After odds ratios and P-values have been calculated for all SNPs, a common approach is to create a Manhattan plot. In the context of GWA studies, this plot shows the negative logarithm of the P-value as a function of genomic location. Thus the SNPs with the most significant association stand out on the plot, usually as stacks of points because ...
The Manhattan plot is named as such as the statistically significant genes appear to show up as "skyscrapers" on the plot, and when there are many genes that are associated with the trait, the plot resembles the Manhattan skyline. Although the Manhattan plot image is for a GWAS study, TWAS results are shown the same way.
Over the years, the GWAS catalog has enhanced its data release frequency by adding features such as graphical user interface, ontology-supported search functionality and a curation interface. [3] The GWAS catalog is widely used to identify causal variants and understand disease mechanisms by biologists, bioinformaticians and other researchers.
Consequently, the database now hosts >21 million p-values and 708 studies (vs 3,948 p-values and 798 studies in the NHGRI GWAS Catalog), representing ~5% of all such data yet produced. GWAS Central makes parts of its data freely available for download by the research community. However, only parts of the data may be downloaded freely, the whole ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
In genetics, imputation is the statistical inference of unobserved genotypes. [1] It is achieved by using known haplotypes in a population, for instance from the HapMap or the 1000 Genomes Project in humans, thereby allowing to test for association between a trait of interest (e.g. a disease) and experimentally untyped genetic variants, but whose genotypes have been statistically inferred ...
[2] [3] [4] It is a complementary approach to the genome-wide association study, or GWAS, methodology. [5] A fundamental difference between GWAS and PheWAS designs is the direction of inference: in a PheWAS it is from exposure (the DNA variant) to many possible outcomes, that is, from SNPs to differences in phenotypes and disease risk.