Search results
Results from the WOW.Com Content Network
In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
(the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description (sequence A000045 in the OEIS). The sequence 0, 3, 8, 15, ... is formed according to the formula n 2 − 1 for the nth term: an explicit definition.
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
In the case of the Fibonacci sequence, one has =, = =, and the resulting function of n is given by Binet's formula. A holonomic sequence is a sequence defined by a recurrence relation of the form = + +, where , …, are polynomials in n. For most holonomic sequences, there is no explicit formula for expressing as a function of n. Nevertheless ...
An explicit formula for the n th Fibonacci number involving the golden ratio φ. The number φ , also called the golden ratio , turns up frequently in geometry , particularly in figures with pentagonal symmetry .
Cassini's identity (sometimes called Simson's identity) and Catalan's identity are mathematical identities for the Fibonacci numbers. Cassini's identity, a special case of Catalan's identity, states that for the nth Fibonacci number, + = ().
A negative-order reversal of this sequence powers formula corresponding to the operation of repeated integration is defined by the zeta series transformation and its generalizations defined as a derivative-based transformation of generating functions, or alternately termwise by and performing an integral transformation on the sequence ...