Search results
Results from the WOW.Com Content Network
The Crab Nebula (catalogue designations M1, NGC 1952, Taurus A) is a supernova remnant and pulsar wind nebula in the constellation of Taurus. The common name comes from a drawing that somewhat resembled a crab with arms produced by William Parsons, 3rd Earl of Rosse , in 1842 or 1843 using a 36-inch (91 cm) telescope . [ 6 ]
The_Crab_Nebula_NASA.ogv (Ogg multiplexed audio/video file, Theora/Vorbis, length 3 min 42 s, 640 × 360 pixels, 558 kbps overall, file size: 14.78 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Thomas Gold has shown that the pulsar's spin-down power is sufficient to power the Crab Nebula. A subsequent study by them, including William D. Brundage, also found that the NP 0532 source is located at the Crab Nebula. [20] A radio source was also reported coincident with the Crab Nebula in late 1968 by L. I. Matveenko in Soviet Astronomy. [21]
The Crab Nebula is a pulsar wind nebula associated with the 1054 supernova.It is located about 6,500 light-years from the Earth. [1]A near-Earth supernova is an explosion resulting from the death of a star that occurs close enough to the Earth (roughly less than 10 to 300 parsecs [30 to 1000 light-years] away [2]) to have noticeable effects on Earth's biosphere.
English: The Crab Nebula, created by a supernova seen nearly a thousand years ago, is one of the sky's most famous "star wrecks." For decades, most astronomers have regarded it as the steadiest beacon at X-ray energies, but data from orbiting observatories show unexpected variations.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Pulsed emission gamma-ray radiation from the Crab has recently been observed up to ≥25 GeV, [21] probably due to synchrotron emission by electrons trapped in the strong magnetic field around the pulsar. Polarization in the Crab nebula [22] at energies from 0.1 to 1.0 MeV, illustrates this typical property of synchrotron radiation.