enow.com Web Search

  1. Ad

    related to: permutations word problems with solutions
  2. It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Interactive Stories

      Enchant young learners with

      animated, educational stories.

Search results

  1. Results from the WOW.Com Content Network
  2. Word problem for groups - Wikipedia

    en.wikipedia.org/wiki/Word_problem_for_groups

    Then the word problem in is solvable: given two words , in the generators of , write them as words in and compare them using the solution to the word problem in . It is easy to think that this demonstrates a uniform solution of the word problem for the class K {\displaystyle K} (say) of finitely generated groups that can be embedded in G ...

  3. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    Permutations without repetition on the left, with repetition to their right. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears a number of times equal exactly to its multiplicity in M. An anagram of a word having some repeated letters is an example of a multiset ...

  4. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  6. Word (group theory) - Wikipedia

    en.wikipedia.org/wiki/Word_(group_theory)

    In group theory, a word is any written product of group elements and their inverses. For example, if x , y and z are elements of a group G , then xy , z −1 xzz and y −1 zxx −1 yz −1 are words in the set { x , y , z }.

  7. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    (n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics , a derangement is a permutation of the elements of a set in which no element appears in its original position.

  8. Small cancellation theory - Wikipedia

    en.wikipedia.org/wiki/Small_cancellation_theory

    A 1949 paper of Tartakovskii [2] was an immediate precursor for small cancellation theory: this paper provided a solution of the word problem for a class of groups satisfying a complicated set of combinatorial conditions, where small cancellation type assumptions played a key role.

  9. Permutation codes - Wikipedia

    en.wikipedia.org/wiki/Permutation_Codes

    A main problem in permutation codes is to determine the value of (,), where (,) is defined to be the maximum number of codewords in a permutation code of length and minimum distance . There has been little progress made for 4 ≤ d ≤ n − 1 {\displaystyle 4\leq d\leq n-1} , except for small lengths.

  1. Ad

    related to: permutations word problems with solutions