Search results
Results from the WOW.Com Content Network
Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules ...
The final issue with using conventional methods to develop expert systems was the need for knowledge acquisition. Knowledge acquisition refers to the process of gathering expert knowledge and capturing it in the form of rules and ontologies. Knowledge acquisition has special requirements beyond the conventional specification process used to ...
Knowledge Acquisition and Documentation Structuring (KADS) is a structured way of developing knowledge-based systems (expert systems). It was developed at the University of Amsterdam as an alternative to an evolutionary approach and is now accepted as the European standard for knowledge based systems.
Knowledge representation goes hand in hand with automated reasoning because one of the main purposes of explicitly representing knowledge is to be able to reason about that knowledge, to make inferences, assert new knowledge, etc. Virtually all knowledge representation languages have a reasoning or inference engine as part of the system.
In the field of artificial intelligence, an inference engine is a software component of an intelligent system that applies logical rules to the knowledge base to deduce new information. The first inference engines were components of expert systems. The typical expert system consisted of a knowledge base and an inference engine.
Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems.It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. [1]
The knowledge base is divided into microtheories.Unlike the knowledge base as a whole, each microtheory must be free from monotonic contradictions. Each microtheory is a first-class object in the Cyc ontology; it has a name that is a regular constant.
The software specialist modules, which are called knowledge sources (KSs). Like the human experts at a blackboard, each knowledge source provides specific expertise needed by the application. The blackboard, a shared repository of problems, partial solutions, suggestions, and contributed information. The blackboard can be thought of as a ...