Search results
Results from the WOW.Com Content Network
Solvents can be broadly classified into two categories: polar and non-polar. A special case is elemental mercury, whose solutions are known as amalgams; also, other metal solutions exist which are liquid at room temperature. Generally, the dielectric constant of the solvent provides a rough measure of a solvent's polarity.
This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction coordinate diagram. Note the decreased ΔG ‡ activation for the non-polar-solvent reaction ...
Polar solvents can be used to dissolve inorganic or ionic compounds such as salts. The conductivity of a solution depends on the solvation of its ions. Nonpolar solvents cannot solvate ions, and ions will be found as ion pairs. Hydrogen bonding among solvent and solute molecules depends on the ability of each to accept H-bonds, donate H-bonds ...
In the pure solvent, there are relatively strong cohesive forces between the solvent molecules due to hydrogen bonding or other polar interactions. Hence, non-polar solutes tend not to be soluble in polar solvents because these solvent-solvent binding interactions must be overcome first. When applied to liquid chromatography (LC), solvophobic ...
A separatory funnel used for liquid–liquid extraction, as evident by the two immiscible liquids.. Liquid–liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar).
In general terms, any solvent that contains a labile H + is called a protic solvent. The molecules of such solvents readily donate protons (H +) to solutes, often via hydrogen bonding. Water is the most common protic solvent. Conversely, polar aprotic solvents cannot donate protons but still have the ability to dissolve many salts. [1] [2]
In less polar solvents, two ions can still be connected to some extent. In a tight, intimate, or contact ion pair, there are no solvent molecules between the two ions. When solvation increases, ionic bonding decreases and a loose or solvent-shared ion pair results. The ion pair concept explains stereochemistry in solvolysis.
Another advantage of these anions is that their salts are more soluble in non-polar organic solvents such as dichloromethane, toluene, and, in some cases, even alkanes. [citation needed] Polar solvents, such as acetonitrile, THF, and water, tend to bind to electrophilic centers, in which cases, the use of a non-coordinating anion is pointless.