Search results
Results from the WOW.Com Content Network
The two types of calculus in quantum calculus are q-calculus and h-calculus. The goal of both types is to find "analogs" of mathematical objects, where, after taking a certain limit, the original object is returned. In q-calculus, the limit as q tends to 1 is taken of the q-analog.
Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative.
For example, if b = 0 and a ≠ 0 then Γ(a+1)U(a, b, z) − 1 is asymptotic to az ln z as z goes to zero. But see #Special cases for some examples where it is an entire function (polynomial). Note that the solution z 1−b U(a + 1 − b, 2 − b, z) to Kummer's equation is the same as the solution U(a, b, z), see #Kummer's transformation.
According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion.The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p: {˙ = = {,}; ˙ = = {,}.
In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.
Semi-convergent series were studied by Poisson (1823), who also gave a general form for the remainder of the Maclaurin formula. The most important solution of the problem is due, however, to Jacobi (1834), who attacked the question of the remainder from a different standpoint and reached a different formula.
An example of calculus of relations arises in erotetics, the theory of questions. In the universe of utterances there are statements S and questions Q. There are two relations π and α from Q to S: q α a holds when a is a direct answer to question q. The other relation, q π p holds when p is a presupposition of question q.
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.