enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    The (n − 3)-faces of an n-polytope are called peaks. A peak contains a rotational axis of facets and ridges in a regular polytope or honeycomb. For example: The peaks of a 3D polyhedron or plane tiling are its 0-faces or vertices. The peaks of a 4D polytope or 3-honeycomb are its 1-faces or edges.

  3. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.

  4. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    A configuration matrix is a matrix in which the rows and columns correspond to the elements of a polyhedron as in the vertices, edges, and faces. The diagonal of a matrix denotes the number of each element that appears in a polyhedron, whereas the non-diagonal of a matrix denotes the number of the column's elements that occur in or at the row's ...

  5. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  6. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  7. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    A parallelepiped where all edges are the same length; A cube, except that its faces are not squares but rhombi; Cuboid: A convex polyhedron bounded by six quadrilateral faces, whose polyhedral graph is the same as that of a cube [4] Some sources also require that each of the faces is a rectangle (so each pair of adjacent faces meets in a right ...

  8. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    The Hasse diagram of the face lattice of an n-simplex is isomorphic to the graph of the (n + 1)-hypercube's edges, with the hypercube's vertices mapping to each of the n-simplex's elements, including the entire simplex and the null polytope as the extreme points of the lattice (mapped to two opposite vertices on the hypercube). This fact may be ...

  9. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.