Search results
Results from the WOW.Com Content Network
In crystallography, a periodic graph or crystal net is a three-dimensional periodic graph, i.e., a three-dimensional Euclidean graph whose vertices or nodes are points in three-dimensional Euclidean space, and whose edges (or bonds or spacers) are line segments connecting pairs of vertices, periodic in three linearly independent axial
The Laves graph. In geometry and crystallography, the Laves graph is an infinite and highly symmetric system of points and line segments in three-dimensional Euclidean space, forming a periodic graph. Three equal-length segments meet at 120° angles at each point, and all cycles use ten or more segments.
It is possible to envision three-dimensional (3D) graphs showing three thermodynamic quantities. [12] [13] For example, for a single component, a 3D Cartesian coordinate type graph can show temperature (T) on one axis, pressure (p) on a second axis, and specific volume (v) on a third. Such a 3D graph is sometimes called a p–v–T diagram. The ...
Because the three numerical values cannot vary independently—there are only two degrees of freedom—it is possible to graph the combinations of all three variables in only two dimensions. The advantage of using a ternary plot for depicting chemical compositions is that three variables can be conveniently plotted in a two-dimensional graph.
Much of the effort in periodic graphs is motivated by applications to natural science and engineering, particularly of three-dimensional crystal nets to crystal engineering, crystal prediction (design), and modeling crystal behavior. Periodic graphs have also been studied in modeling very-large-scale integration (VLSI) circuits. [3]
Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths , bond angles , torsional angles and any other geometrical parameters that determine the position of each atom.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by