Search results
Results from the WOW.Com Content Network
Fluid-attenuated inversion recovery (FLAIR) is a magnetic resonance imaging sequence with an inversion recovery set to null fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. [ 1 ]
A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
Leukoaraiosis is a particular abnormal change in appearance of white matter near the lateral ventricles. It is often seen in aged individuals, but sometimes in young adults. [1] [2] On MRI, leukoaraiosis changes appear as white matter hyperintensities (WMHs) in T2 FLAIR images.
The diagnosis is typically made with magnetic resonance imaging of the brain. The findings most characteristic for PRES are symmetrical hyperintensities on T 2-weighed imaging in the parietal and occipital lobes; this pattern is present in more than half of all cases. [1] [3] FLAIR sequences can be better at showing these abnormalities. [4]
Fluid-attenuated inversion recovery (FLAIR) [2] is an inversion-recovery pulse sequence used to nullify the signal from fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid so as to bring out periventricular hyperintense lesions, such as multiple sclerosis plaques.
Central pontine myelinolysis; Other names: Osmotic demyelination syndrome, central pontine demyelination: Axial fat-saturated T2-weighted image showing hyperintensity in the pons with sparing of the peripheral fibers, the patient was an alcoholic admitted with a serum Na of 101 treated with hypertonic saline, he was left with quadriparesis, dysarthria, and altered mental status
Varying degree of symmetric T2 hyperintense signal changes in the basal ganglia (i.e., caudate and putamen), and to a lesser extent globus pallidus and occipital cortex. [47] Brain FDG PET-CT tends to be markedly abnormal, and is increasingly used in the investigation of dementias. Patients with CJD will normally have hypometabolism on FDG PET ...
The MRI of patients with VWM shows a well defined leukodystrophy. These MRIs display reversal of signal intensity of the white matter in the brain. Recovery sequences and holes in the white matter are also visible. [4] Over time, the MRI is excellent at showing rarefaction and cystic degeneration of the white matter as it is replaced by fluid.