enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero (⁠ ⁠) sets and it is by definition equal to the empty set.

  3. Measure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Measure_(mathematics)

    Countable additivity of a measure : The measure of a countable disjoint union is the same as the sum of all measures of each subset.. Let be a set and a σ-algebra over . A set function from to the extended real number line is called a measure if the following conditions hold:

  4. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  6. Disjoint union - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union

    In category theory the disjoint union is defined as a coproduct in the category of sets. As such, the disjoint union is defined up to an isomorphism, and the above definition is just one realization of the coproduct, among others. When the sets are pairwise disjoint, the usual union is another realization of the coproduct.

  7. Symmetric difference - Wikipedia

    en.wikipedia.org/wiki/Symmetric_difference

    In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...

  8. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    Any union of elements of τ is an element of τ. Any intersection of finitely many elements of τ is an element of τ. If τ is a topology on X, then the pair (X, τ) is called a topological space. The notation X τ may be used to denote a set X endowed with the particular topology τ. By definition, every topology is a π-system.

  9. Interior (topology) - Wikipedia

    en.wikipedia.org/wiki/Interior_(topology)

    In mathematics, specifically in topology, the interior of a subset S of a topological space X is the union of all subsets of S that are open in X. A point that is in the interior of S is an interior point of S. The interior of S is the complement of the closure of the complement of S. In this sense interior and closure are dual notions.