enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pasteur effect - Wikipedia

    en.wikipedia.org/wiki/Pasteur_effect

    First, glucose metabolism is faster through ethanol fermentation because it involves fewer enzymes and limits all reactions to the cytoplasm. Second, ethanol has bactericidal activity by causing damage to the cell membrane and protein denaturing, allowing yeast fungus to outcompete environmental bacteria for resources. [6]

  3. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  4. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Instead, the electrons are removed from NADH and passed to oxygen through a series of enzymes that each release a small amount of the energy. This set of enzymes, consisting of complexes I through IV, is called the electron transport chain and is found in the inner membrane of the mitochondrion .

  5. Dioxygenase - Wikipedia

    en.wikipedia.org/wiki/Dioxygenase

    The most widely observed cofactor involved in dioxygenation reactions is iron, but the catalytic scheme employed by these iron-containing enzymes is highly diverse. Iron-containing dioxygenases can be subdivided into three classes on the basis of how iron is incorporated into the active site: those employing a mononuclear iron center, those containing a Rieske [2Fe-2S] cluster, and those ...

  6. Oxidoreductase - Wikipedia

    en.wikipedia.org/wiki/Oxidoreductase

    For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:

  7. Oxygenase - Wikipedia

    en.wikipedia.org/wiki/Oxygenase

    An oxygenase is any enzyme that oxidizes a substrate by transferring the oxygen from molecular oxygen O 2 (as in air) to it. The oxygenases form a class of oxidoreductases ; their EC number is EC 1.13 or EC 1.14.

  8. Nitric-oxide reductase - Wikipedia

    en.wikipedia.org/wiki/Nitric-oxide_reductase

    Nitric oxide reductase was assigned Enzyme Commission number (EC) 1.7.2.5. Enzyme Commission numbers are the standard naming system used for enzymes. [5] The EC identifies the class, subclass, sub-subclass, and serial number of the enzyme. [5] Nitric oxide reductase is in Class 1, therefore it is an oxidoreductases. [5] Figure 1. The Nitrogen ...

  9. Superoxide dismutase - Wikipedia

    en.wikipedia.org/wiki/Superoxide_dismutase

    Superoxide dismutase (SOD, EC 1.15.1.1) is an enzyme that alternately catalyzes the dismutation (or partitioning) of the superoxide (O − 2) anion radical into normal molecular oxygen (O 2) and hydrogen peroxide (H 2 O 2). Superoxide is produced as a by-product of oxygen metabolism and, if not regulated, causes many types of cell damage. [2]