Search results
Results from the WOW.Com Content Network
Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y 3 Al 5 O 12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant , neodymium in the +3 oxidation state, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are ...
YAG laser may refer to two types of lasers that use yttrium aluminum garnet (YAG): Nd:YAG laser (doped with neodymium) Er:YAG laser (doped with erbium
Laser rods (from left to right): Ruby, Alexandrite, Er:YAG, Nd:YAG The active laser medium (also called a gain medium or lasing medium ) is the source of optical gain within a laser . The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously ...
Neodymium-doped yttrium lithium fluoride (Nd:YLF) is a lasing medium for arc lamp-pumped and diode-pumped solid-state lasers. The YLF crystal (LiYF 4) is naturally birefringent, and commonly used laser transitions occur at 1047 nm and 1053 nm. [1] It is used in Q-switched systems in part due to its relatively long fluorescence lifetime.
Neodymium-doped solid state lasers continue to be the laser source of choice for industrial applications. Direct pumping of the upper Nd laser level at 885-nm (rather than at the more traditional broad 808-nm band) offers the potential of improved performance through a reduction in the lasing quantum defect, thereby improving system efficiency ...
YAG is an abbreviation for yttrium aluminum garnet which are crystals that are used for solid-state lasers while Nd:YAG refers to neodymium-doped yttrium aluminum garnet crystals that are used in the solid-state lasers as the laser mediate. YAG lasers emit a wavelength of light waves with high energy.
Neodymium-doped gadolinium orthovanadate, typically abbreviated as Nd:GdVO 4, is one of the active laser medium for diode laser-pumped solid-state lasers. Several advantages over Nd:YAG crystals include a larger emission cross-section , a pump power threshold, a wider absorption bandwidth, and a polarized output.
Neodymium(III) carbonate is the carbonate of neodymium where neodymium exhibits the +3 oxidation state. It can be obtained by reacting neodymium(III) chloride with ammonium bicarbonate in water or from the hydrolysis of neodymium(III) chloroacetate: [14] 2Nd(C 2 Cl 3 O 2) 3 + 3H 2 O → Nd 2 (CO 3) 3 + 6CHCl 3 + 3CO 2 Neodymium acetate powder