Search results
Results from the WOW.Com Content Network
For strain less than the ultimate tensile strain, the increase of work-hardening rate in this region will be greater than the area reduction rate, thereby make this region harder to deform than others, so that the instability will be removed, i.e. the material increases in homogeneity before reaching the ultimate strain.
Advantages of three-point and four-point bending tests over uniaxial tensile tests include: simpler sample geometries; minimum sample machining is required; simple test fixture; possibility to use as-fabricated materials [6] Disadvantages include: more complex integral stress distributions through the sample
A forming limit diagram, also known as a forming limit curve, is used in sheet metal forming for predicting forming behavior of sheet metal. [1] [2] The diagram attempts to provide a graphical description of material failure tests, such as a punched dome test. In order to determine whether a given region has failed, a mechanical test is performed.
Tensile specimens made from an aluminum alloy. The left two specimens have a round cross-section and threaded shoulders. The right two are flat specimens designed to be used with serrated grips. An aluminium alloy tensile specimen, after testing. It has broken, and the surface where it broke can be inspected.
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...
As for the tensile strength point, it is the maximal point in engineering stress–strain curve but is not a special point in true stress–strain curve. Because engineering stress is proportional to the force applied along the sample, the criterion for necking formation can be set as δ F = 0. {\displaystyle \delta F=0.}
Other models may also include the effects of strain gradients. [3] Independent of test conditions, the flow stress is also affected by: chemical composition, purity, crystal structure, phase constitution, microstructure, grain size, and prior strain. [4] The flow stress is an important parameter in the fatigue failure of ductile materials.