enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eighth power - Wikipedia

    en.wikipedia.org/wiki/Eighth_power

    In arithmetic and algebra, the eighth power of a number n is the result of multiplying eight instances of n together. So: n 8 = n × n × n × n × n × n × n × n.. Eighth powers are also formed by multiplying a number by its seventh power, or the fourth power of a number by itself.

  3. Zenzizenzizenzic - Wikipedia

    en.wikipedia.org/wiki/Zenzizenzizenzic

    Zenzizenzizenzic is an obsolete form of mathematical notation representing the eighth power of a number (that is, the zenzizenzizenzic of x is x 8), dating from a time when powers were written out in words rather than as superscript numbers.

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  5. 256 (number) - Wikipedia

    en.wikipedia.org/wiki/256_(number)

    256 is 4 raised to the 4th power, so in tetration notation, 256 is 2 4. [1] 256 is the value of the expression , where =. 256 is a perfect square (16 2). 256 is the only 3-digit number that is zenzizenzizenzic. It is 2 to the 8th power or (()).

  6. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  7. 8 - Wikipedia

    en.wikipedia.org/wiki/8

    By Mihăilescu's Theorem, it is the only nonzero perfect power that is one less than another perfect power. 8 is the first proper Leyland number of the form x y + y x, where in its case x and y both equal 2. [4] 8 is a Fibonacci number and the only nontrivial Fibonacci number that is a perfect cube. [5] Sphenic numbers always have exactly eight ...

  8. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.

  9. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Where a power of ten has different names in the two conventions, the long scale name is shown in parentheses. The positive 10 power related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 [(prefix-number + 1) × 3] Examples: billion = 10 [(2 + 1) × 3] = 10 9; octillion = 10 [(8 + 1) × 3 ...