enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A unit fraction is a common fraction with a numerator of 1 (e.g., ⁠ 1 / 7 ⁠). Unit fractions can also be expressed using negative exponents, as in 21, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠.

  3. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    From the relation to unit fractions, it can be shown that cyclic numbers are of the form of the Fermat quotient b p − 11 p {\displaystyle {\frac {b^{p-1}-1}{p}}} where b is the number base (10 for decimal ), and p is a prime that does not divide b .

  4. Lowest common denominator - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_denominator

    Description. The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple. The product of the denominators is always a common denominator, as in: but it is not always the lowest common denominator, as in: Here, 36 is the least common multiple of 12 and 18.

  5. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]

  6. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    It is unknown whether these constants are transcendental in general, but Γ(⁠ 1 / 3 ⁠) and Γ(⁠ 1 / 4 ⁠) were shown to be transcendental by G. V. Chudnovsky. Γ(⁠ 1 / 4 ⁠) / 4 √ π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ(⁠ 1 / 4 ⁠), π, and e π are algebraically independent.

  7. Unit fraction - Wikipedia

    en.wikipedia.org/wiki/Unit_fraction

    Arthur Eddington argued that the fine-structure constant was a unit fraction. He initially thought it to be 1/136 and later changed his theory to 1/137. This contention has been falsified, given that current estimates of the fine structure constant are (to 6 significant digits) 1/137.036. [30]

  8. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    For example, ⁠ 1 / 4 ⁠, ⁠ 5 / 6 ⁠, and ⁠ −101 / 100 ⁠ are all irreducible fractions. On the other hand, ⁠ 2 / 4 ⁠ is reducible since it is equal in value to ⁠ 1 / 2 ⁠, and the numerator of ⁠ 1 / 2 ⁠ is less than the numerator of ⁠ 2 / 4 ⁠. A fraction that is reducible can be reduced by dividing both the numerator ...

  9. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...