Search results
Results from the WOW.Com Content Network
Every prime number p divides a Fibonacci number that can be determined by the value of p modulo 5. If p is congruent to 1 or 4 modulo 5, then p divides F p−1, and if p is congruent to 2 or 3 modulo 5, then, p divides F p+1. The remaining case is that p = 5, and in this case p divides F p.
Answer: 7 × 1 + 6 × 10 + 5 × 9 + 4 × 12 + 3 × 3 + 2 × 4 + 1 × 1 = 178 mod 13 = 9 Remainder = 9 A recursive method can be derived using the fact that = and that =. This implies that a number is divisible by 13 iff removing the first digit and subtracting 3 times that digit from the new first digit yields a number divisible by 13.
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd ...
An example is shown below, representing the division of 500 by 4 (with a result of 125). 1 2 5 ... (0 remainder, bring down next figure) 4 (7 ÷ 4 = 1 r 3) ...
Multiply both sides by x to get . Subtract 1 from each side to get The right side can be factored, Dividing both sides by x − 1 yields Substituting x = 1 yields. This is essentially the same fallacious computation as the previous numerical version, but the division by zero was obfuscated because we wrote 0 as x − 1.
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...