Search results
Results from the WOW.Com Content Network
v. t. e. A truth table is a mathematical table used in logic —specifically in connection with Boolean algebra, Boolean functions, and propositional calculus —which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
e. In logic, a functionally complete set of logical connectives or Boolean operators is one that can be used to express all possible truth tables by combining members of the set into a Boolean expression. [1][2] A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete.
Tautology (logic) In mathematical logic, a tautology (from Ancient Greek: ταυτολογία) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of ...
The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
t. e. In logic, a truth function[1] is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value (s) will always output the same truth value.
Propositional formula. In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula.
According to the truth table, it is easy to calculate the individual coefficients of the Zhegalkin polynomial. To do this, sum up modulo 2 the values of the function in those rows of the truth table where variables that are not in the conjunction (that corresponds to the coefficient being calculated) take zero values.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.