Search results
Results from the WOW.Com Content Network
Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...
Spacetime mathematically viewed as R 4 endowed with this bilinear form is known as Minkowski space M. The Lorentz transformation is thus an element of the group O(1, 3), the Lorentz group or, for those that prefer the other metric signature, O(3, 1) (also called the Lorentz group). [nb 3] One has:
The concept of the Lorentz group has a natural generalization to spacetime of any number of dimensions. Mathematically, the Lorentz group of (n + 1)-dimensional Minkowski space is the indefinite orthogonal group O(n, 1) of linear transformations of R n+1 that preserves the quadratic form
The four-dimensional spacetime can be visualized as a four-dimensional space, with each point representing an event in spacetime. The Lorentz transformations can then be thought of as rotations in this four-dimensional space, where the rotation axis corresponds to the direction of relative motion between the two observers and the rotation angle ...
Although this allows the construction of a string theory in 4 spacetime dimensions, such a theory usually does not describe a Lorentz invariant background. However, there are recent developments which make possible Lorentz invariant quantization of string theory in 4-dimensional Minkowski space-time. [citation needed]
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three ...
Four-tensors of this kind are usually known as four-vectors. Here the component x 0 = ct gives the displacement of a body in time (coordinate time t is multiplied by the speed of light c so that x 0 has dimensions of length). The remaining components of the four-displacement form the spatial displacement vector x = (x 1, x 2, x 3). [1]