Search results
Results from the WOW.Com Content Network
The series = + = + + is known as the alternating harmonic series. It is conditionally convergent by the alternating series test , but not absolutely convergent . Its sum is the natural logarithm of 2 .
The geometric series 1 / 2 − 1 / 4 + 1 / 8 − 1 / 16 + ⋯ sums to 1 / 3 .. The alternating harmonic series has a finite sum but the harmonic series does not.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
= + = + +, which has a sum of the natural logarithm of 2, while the sum of the absolute values of the terms is the harmonic series, = = + + + + +, which diverges per the divergence of the harmonic series, [28] so the alternating harmonic series is conditionally convergent.
In the following, a sum or product taken over p always represents a sum or product taken over a specified set of primes. The proof rests upon the following four inequalities: Every positive integer i can be uniquely expressed as the product of a square-free integer and a square as a consequence of the fundamental theorem of arithmetic .
2.1 Harmonic numbers. ... By taking to be the partial sum function associated to some sequence, this leads to the summation by parts formula. Examples. Harmonic ...
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
A classic example is the alternating harmonic series given by + + = = +, which converges to (), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem .