enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Apsis - Wikipedia

    en.wikipedia.org/wiki/Apsis

    The apsides refer to the farthest (2) and nearest (3) points reached by an orbiting planetary body (2 and 3) with respect to a primary, or host, body (1). An apsis (from Ancient Greek ἁψίς (hapsís) 'arch, vault'; pl. apsides / ˈ æ p s ɪ ˌ d iː z / AP-sih-deez) [1] [2] is the farthest or nearest point in the orbit of a planetary body about its primary body.

  3. Apsidal precession - Wikipedia

    en.wikipedia.org/wiki/Apsidal_precession

    The ancient Greek astronomer Hipparchus noted the apsidal precession of the Moon's orbit (as the revolution of the Moon's apogee with a period of approximately 8.85 years); [4] it is corrected for in the Antikythera Mechanism (circa 80 BCE) (with the supposed value of 8.88 years per full cycle, correct to within 0.34% of current measurements). [5]

  4. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    The six Earth images are positions along the orbital ellipse, which are sequentially the perihelion (periapsis—nearest point to the Sun) on anywhere from January 2 to January 5, the point of March equinox on March 19, 20, or 21, the point of June solstice on June 20, 21, or 22, the aphelion (apoapsis—the farthest point from the Sun) on ...

  5. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    The Earth spends less time near perihelion and more time near aphelion. This means that the lengths of the seasons vary. [ 14 ] Perihelion currently occurs around 3 January, so the Earth's greater velocity shortens winter and autumn in the northern hemisphere, and summer and spring in the southern hemisphere.

  6. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    For illustration, the long axis of the planet Mercury is defined as the line through its successive positions of perihelion and aphelion. Over time, the long axis of most orbiting bodies rotates gradually, generally no more than a few degrees per complete revolution, because of gravitational perturbations from other bodies, oblateness in the ...

  7. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    As the two dates chosen here are equinoxes, this will be correct when perihelion, the date the Earth is closest to the Sun, falls on a solstice. The current perihelion, near January 4, is fairly close to the solstice of December 21 or 22.

  8. 50 Earth Day Trivia Questions and Answers to Inspire You to ...

    www.aol.com/lifestyle/50-earth-day-trivia...

    Earth Day is on April 22, but really, it should be every day—saving the planet should be a daily occurrence! From conservation to wildlife to politics, test your environmental and historical ...

  9. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    Log-log plot of period T vs semi-major axis a (average of aphelion and perihelion) of some Solar System orbits (crosses denoting Kepler's values) showing that a³/T² is constant (green line) In celestial mechanics, when both orbiting bodies' masses have to be taken into account, the orbital period T can be calculated as follows: [4]